Génie mécanique

Étalonnage d'un espace de travail par multilatération

Published on

Authors: Martin Camboulives

Les travaux présentés dans cette thèse ont pour but la maîtrise des méthodes d'étalonnage par multilatération. Ils s'inscrivent dans une collaboration entre le Laboratoire national de métrologie et d'essais (LNE) et le Laboratoire Universitaire de Recherche en Production Automatisée (LURPA). Dans ces travaux, la multilatération est dite séquentielle car réalisée avec un unique Laser Tracer positionné successivement plusieurs points de l'espace. La détermination de ces positions ainsi que des bras-morts de l'interféromètre est le point clef de la méthode. Pour l'évaluation des incertitudes, le raccordement aux étalons est fait via les longueurs interférométriques délivrées par le Laser Tracer. Elles sont associées à des défauts caractéristiques d'une cinématique particulière ou aux coordonnées des points mesurés. Elles sont évaluées au travers de la stratégie de mesure et des performances de chaque composant intervenant lors de la procédure d'étalonnage. Mesurer les coordonnées d'un point cible de l'espace par multilatération implique de connaître les positions des points de vue depuis lesquels le point est visé, ainsi que les longueurs qui le séparent des points de vue qui en pratique sont les centres des Laser Tracer. La méthode que nous proposons permet d'identifier les positions et bras-morts des Laser Tracer qui constituent un repère de mesure qualifié de Système Mesurant de Référence (SMR), puis de réaliser la multilatération. Ensuite, l'extraction de défauts volumiques permet éventuellement d'identifier les défauts cinématiques d'une chaîne de solides particulière associée au volume de mesure. Dans cette optique, nous proposons une procédure type inspirée des travaux du LNE axés sur l'utilisation d'une barre à trous pour identifier les défauts cinématiques d'une MMT à trois axes cartésiens. Cette méthode se démarque des approches actuellement proposées car le SMR est construit indépendamment de l'identification des défauts de l'appareil de mesure. De plus, la procédure d'étalonnage que nous proposons repose sur une investigation axe par axe plutôt que par une optimisation globale du problème d'étalonnage. En nous focalisant sur les machines à mesurer tridimensionnelles (MMT), nous proposons un bilan d'incertitudes qui a inclus des facteurs dont le rôle n'était auparavant pas pris en compte dans la littérature. Ces facteurs sont liés au fait de n'utiliser qu'un seul Laser Tracer pour étalonner la MMT. Nous proposons un module d'évaluation des incertitudes qui permet, grâce à des simulations de Monte Carlo, d'identifier l'influence de chacun de facteurs d'incertitude. La pertinence d'une stratégie d'étalonnage peut donc être évaluée à priori de la mise en œuvre de la procédure. L'outil de simulation proposé s'appuie sur la simulation du comportement de la MMT et de celui du Laser Tracer lors de la mesure. Deux indicateurs d'incertitude sont proposés pour l'étude des incertitudes. L'un est lié à l'exactitude de calcul du SMR construit sur les positions successives du Laser Tracer, l'autre est une image de l'incertitude obtenu sur les profils des défauts cinématiques calculés. Cet outil de simulation a permis de valider l'importance des sources d'incertitudes établies initialement pour l'étalonnage d'une MMT à trois axes cartésiens. L’ensemble de la démarche a été appliqué et validé pour une MMT à 3 axes cartésiens en conditions de laboratoire chez un industriel. Cependant, l’approche proposée découple la construction du SMR de l’identification des défauts cinématiques. Elle peut donc être facilement étendue à des systèmes de mesure 3D variés. Nous montrons donc que la démarche globale peut s’appliquer à des espaces de mesure sans cinématique machine. Il s’agit alors d’identifier les défauts volumiques associés à l’espace de mesure, ainsi que les incertitudes associées à la méthode d’étalonnage mise en œuvre. Afin d’illustrer notre propos, nous traitons le cas d’espaces de travail associés à un système de mesure optique.