
Modeling and calibration of opto-mechanical chains in additive manufacturing

Kevin GODINEAU, Sylvain LAVERNHE, Christophe TOURNIER

Window

Window 2

Work plane

 \boldsymbol{O}^{exp}

 $c(\boldsymbol{Q}^{exp},\boldsymbol{\delta})$

Proposed calibration method

 B_{ax}

 \mathcal{R}_{i}

 X_p

if on

 $\boldsymbol{\delta}$ and \boldsymbol{e}

δ

ax

Mirror x

- Nominal virtual machine

2 - Virtual machine with defects

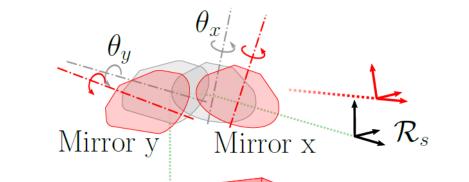
Hypothesis

 Orientation and position of components according to the nominal arrangement of the surfaces

 $Y_{ay} \ Z_{ay} \ A_{ay}$

Window

Mirror y


 \mathcal{R}_{w1}^{-}

 \mathcal{R}_{w2}^{-}

 \mathcal{R}_p

- **Geometrical optics**
- Forward kinematic model X = h(Q)
 - 13 geometrical parameters
 - 2 optical parameters
- Inverse kinematic model Window 2 $\boldsymbol{Q} = h^{-1}(\boldsymbol{X})$ Work plane
 - Numerically determined by gradient due to the nonlinearities of the function h

- Forward kinematic model with defects $X = f(\delta, Q)$
 - Only assembly defects are considered (other defects, optical and thermal, are neglected)

 \mathcal{R}_p

 X^{exp}

• 30 assembly defects δ_i have an impact on the laser spot position in the work plane

 δ_{c_s}

 $\delta_{c_{ax}}$

 $\delta_{c_{ay}}$

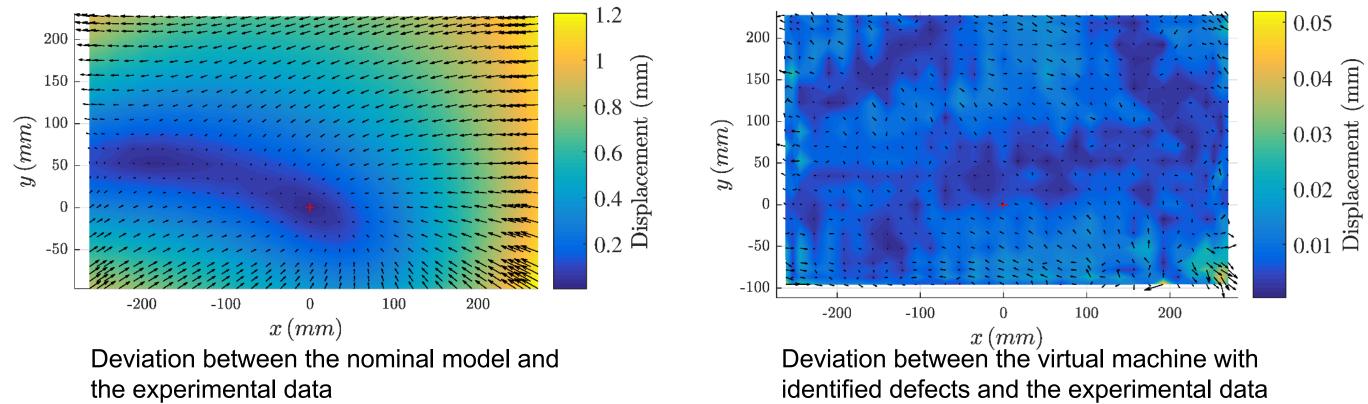
 δ_{c_p}

	Pc	Position defects			Orientation defects		
	X	У	Z	а	b	С	
Laser source		δ_{y_s}	δ_{z_s}		δ_{b_s}	δ_{c_s}	
Rotary axis x		$\delta_{y_{ax}}$	$\delta_{z_{ax}}$	$\delta_{a_{ax}}$	$\delta_{b_{ax}}$	$\delta_{c_{ax}}$	
Mirror x			$\delta_{z_{mx}}$	$\delta_{a_{mx}}$	$\delta_{b_{mx}}$		
Rotary axis y		$\delta_{y_{ay}}$	$\delta_{z_{ay}}$	$\delta_{a_{ay}}$	$\delta_{b_{ay}}$	$\delta_{c_{ay}}$	
Mirror y		ý	$\delta_{z_{my}}$	$\delta_{a_{my}}$	$\delta_{b_{my}}$		
Window 1			2	$\delta_{a_{w1}}$	$\delta_{b_{w1}}$		
Window 2				$\delta_{a_{w2}}$	$\delta_{b_{w2}}$		
Work plane	δ_{x_p}	δ_{y_p}	δ_{z_p}	δ_{a_p}	δ_{b_p}	δ_{c_p}	
Work plane	δ_{x_p}	δ_{y_p}	δ_{z_p}	δ_{a_p}	δ_{b_p}		

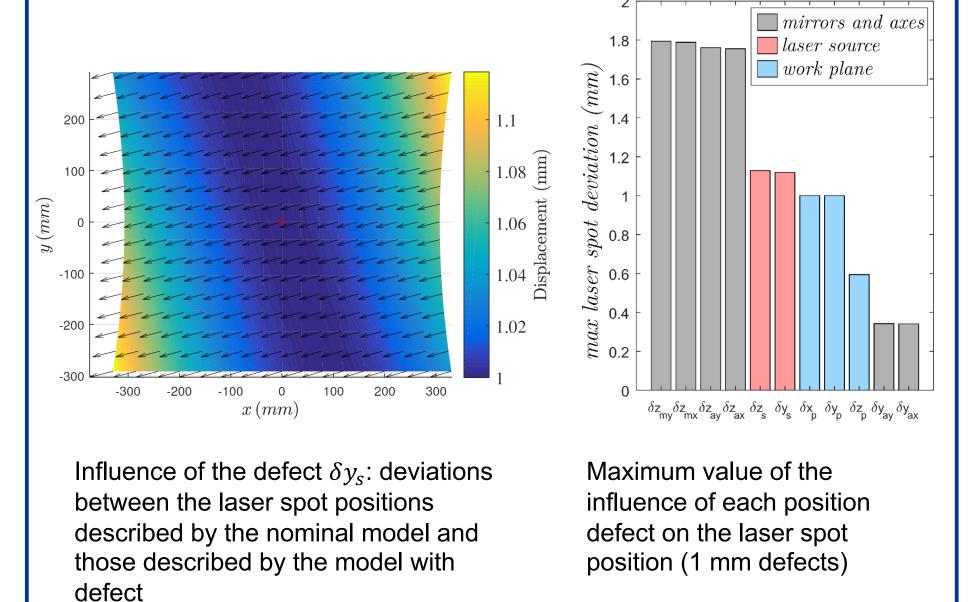
4 - Calibration and validation

- Calibration method
 - Production of a real data set (Q^{exp}, X^{exp})
 - I Use of the virtual machine with defects to

3 – Defect basis


- Creation of a defect basis from the virtual machine
- Influence of defects δ

simulate the laser spot position X


III - Projection of deviations *e* between experimental and simulated data on the defects basis

V - Identification of a new virtual machine closer to the behavior of the real machine

- Experimentation on industrial machine
 - Calibration performed in 1 measurement step and 4 iterations of the algorithm
 - 95 % of the deviations are less than 20 μm
 - Validation on the FormUp 350 machine

- Characterization of each defect influence $I(\boldsymbol{\delta}, \boldsymbol{Q}) = f(\boldsymbol{\delta}, \boldsymbol{Q}) - h(\boldsymbol{Q})$
- Position and orientation defects of the mirrors have the highest influence on the laser spot position
- Windows have a negligible impact (1000 times less important than other defects)

Laboratoire Universitaire de Recherche en Production Automatisée

école

